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Abstract:    The   region   of   southern   Africa   (SA)   has   a   fragile   food   economy   and   is   vulnerable   to  

frequent   droughts.   In   2015-2016,   an   El   Niño-driven   drought   resulted   in   major   maize   production  

shortfalls,   food   price   increases,   and   livelihood   disruptions   that   pushed   29   million   people   into  
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severe   food   insecurity.   Interventions   to   mitigate   food   insecurity   impacts   require   early   warning   of  

droughts   —preferably   as   early   as   possible   before   the   harvest   season   (typically,   starting   in   April)  

and   lean   season   (typically,   starting   in   November).   Hydrologic   monitoring   and   forecasting  

systems   provide   a   unique   opportunity   to   support   early   warning   efforts,   since   they   can   provide  

regular   updates   on   available   rootzone   soil   moisture   (RZSM),   a   critical   variable   for   crop   yield,  

and   provide   forecasts   of   RZSM   by   combining   the   estimates   of   antecedent   soil   moisture  

conditions   with   climate   forecasts.   For   SA,   this   study   documents   the   predictive   capabilities   of   a  

recently   developed   NASA   Hydrological   Forecasting   and   Analysis   System   (NHyFAS).   The  

NHyFAS   system’s   ability   to   forecast   and   monitor   the   2015/16   drought   event   is   evaluated.   The  

system’s   capacity   to   explain   interannual   variations   in   regional   crop   yield   and   identify  

below-normal   crop   yield   events   is   also   evaluated.    Results   show   that   the   NHyFAS   products  

would   have   identified   the   regional   severe   drought   event,   which   peaked   during  

December-February   of   2015/2016,   at   least   as   early   as   November   1,   2015.   Next,   it   is   shown   that  

February   RZSM   forecasts   produced   as   early   as   November   1   (4-5   months   before   the   start   of  

harvest   and   about   a   year   before   the   start   of   the   next   lean   season)   correlate   fairly   well   with  

regional   crop   yields   (r=0.49).   The   February   RZSM   monitoring   product,   available   in   early   March,  

correlates   with   the   regional   crop   yield   with   higher   skill   (r=   0.79).   It   is   also   found   that   when   the  

February   RZSM   forecast   produced   on   November   1   is   indicated   to   be   in   the   lowest   tercile,   the  

detrended   regional   crop   yield   is   below   normal   about   two-thirds   (significance   level   ~86%)   of   the  

time.   Furthermore,   when   the   February   RZSM   monitoring   product   (available   in   early   March)  

indicates   a   lowest   tercile   value,   the   crop   yield   is   always   below   normal,   at   least   over   the   sample  
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years   considered.   These   results   indicate   that   the   NHyFAS   products   can   effectively   support   food  

insecurity   early   warning   in   the   SA   region.  

1   Introduction  

Southern   Africa   (SA)   is   vulnerable   to   food   insecurity.   Climate   stressors   (e.g.   precipitation   and  

temperature)   are   among   the   important   drivers   of   food   insecurity   (Misselhorn   2005;   Conway   et   al.  

2015).   The   primary   rainy   season   in   SA   spans   October   to   March,   which   overlaps   the   main  

planting   season   from   October   to   February   (Fig.   1   (a)).   This   period   also   covers   the   lean   season,  

when   food   supplies   are   typically   limited.   April-July   is   typically   the   main   harvest   season,   when  

the   food   reserve   is   expected   to   begin   replenishing.    In   several   SA   countries,   with   the   Republic   of  

South   Africa   (RSA)   being   the   main   exception,   typical   monthly   variability   in   food   prices   closely  

follows   this   crop   cycle,   as   shown   in   Fig.   1(b).   The   prices   typically   start   to   rise   after   the   harvest  

season   and   reach   their   peak   just   before   or   near   the   start   of   the   harvest   season.   This  

correspondence   between   the   prices   and   crop   cycles   highlights   the   region’s   climate-related  

sensitivity   to   food   insecurity.   In   the   case   of   below-normal   crop   yield,   the   food   prices   rise   even  

more   than   normal,   reducing   access   to   food   for   the   poorest   of   the   population.   

The   percentage   income   of   wealth   shared   by   the   poorest   10%   and   20%   of   the   population  

in   several   SA   countries   has   not   improved   significantly   over   time   (not   shown   here).   These  

portions   of   the   population   are   likely   to   be   more   food   insecure   in   drought   years.   They   already   use  

a   relatively   higher   share   of   their   income   on   food,   and   in   the   case   of   price   rises   related   to   low   crop  

yield,   their   access   to   food   becomes   even   more   limited.  

The   2015-16   drought   event   (attributed   to   a   strong   El   Niño)   in   southern   Africa   further  

highlighted   its   vulnerability   to   climate-related   regional   food   insecurity    (Archer   et   al.,   2017;   Funk  
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et   al.,   2018;   Pomposi   et   al.,   2018) .   This   event   led   to   a   substantial   reduction   in   regional  

agricultural   production   —including   in   the   Republic   of   South   Africa   (RSA),   which   is   the   main  

crop-producing   country   in   the   region—a   reduction   and   rationing   of   water   supplies,   a   loss   of  

livestock,   and   an   increase   in   unemployment   in   the   region    (SADC,   2016) .   Throughout   the  

Southern   African   Development   Community   (SADC)   region   in   2015-16,   cereal   production   was  

down   by   -10.2%   (varying   from   +61%   to   -94%   in   individual   member   countries)   relative   to   the  

previous   5-year   average    (SADC,   2016) .   Figure   1   (c)-(f)    shows   a   comparison   of   national   retail  

maize   prices   (in   USD)   in   several   of   the   SA   countries   during   2015-16,   with   the   previous   5-year  

mean   prices   in   those   countries.   The   prices   in   2015-16   were   substantially   higher   than   the   previous  

5-year   mean.   Of   particular   importance   is   the   price   increase   in   RSA,   where,   typically,   the   food  

prices   do   not   vary   much   throughout   the   year   due   to   its   general   self-sufficiency   in   food  

production,   as   well   as   its   international   trade.   Consumer   Price   Index   (CPI)   for   food   for   RSA   also  

experienced   a   drastic   upward   shift   during   the   2015-16   drought   year   (not   shown   here).   In   fact,  

based   on   the   CPI   data   (available   from    the   FAO)   the   CPI   was   substantially   higher   than   that   of   the  

past   5-year   mean   during   the   beginning   of   the   following   growing   season   of   2016-17   including   in  

RSA   where   typically   the   CPI   remains   fairly   stable   during   a   year.   These   price   shocks   can  

dramatically   impact   poor   households,   who   typically   spend   60%   or   more   of   their   income   on   food.  

According   to   the   recent   World   Bank   Development   Indicator,   incomes   for   the   poorest   10%   and  

20%   of   households   in   these   countries   have   remained   generally   constant   underscoring   the   depth  

of   poverty   (not   shown).   On   average,   in   Malawi,   Mozambique,   Zimbabwe   and   South   Africa,  

these   individuals   subsist   on   $70,   $126,   $288,   and   $716   USD   a   year,   respectively.  
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Figure   1(c)-(f)   and   the   income   related   facts   (based   on   World   Bank   Development  

indicator)   presented   above   highlight   the   severity   of   food   insecurity   in   a   regional   drought   event  

like   2015-16.   In   the   2015-2016   event,   food   imports   from   RSA—which   is   the   main   producer   and  

exporter   of   food   in   the   region   to   the   other   SA   countries—were   not   enough,   and   international  

assistance   becomes   crucial.  

This   is   why   in   June   2016,   the   SADC   launched   a   Regional   Humanitarian   Appeal   stating  

that   approximately   40   million   people   in   the   region   required   humanitarian   assistance,   at   a   cost   of  

approximately   USD   $2.4   billion   (Magadzire   et   al.   2017).   

Mitigation   of   the   most   adverse   impacts   of   food   insecurity,   like   the   event   of   2015-16,  

requires   timely   and   effective   early   warning.   An   effective   early   warning   system   has   two   key  

attributes    (Funk   et   al.,   2019) :   (1)   the   ability   to   provide   routine,   frequent   early   warning   of   drought  

status   and   (2)   the   ability   to   incorporate   both   monitoring   and   forecasting   to   best   account   for   the  

conditions   until   the   date   of   early   warning,   in   combination   with   the   climate   outlook   for   the  

upcoming   season.   

A   seasonal   scale   hydrologic   forecasting   system   can   potentially   effectively   support   an  

early   warning   system,   as   it   can   provide   updated   hydrologic   forecasts   monthly   by   accounting   for  

the   drought   conditions   as   of   the   forecast   release   date   and   climate   outlook   over   the   forecast   period  

(Sheffield   et   al.,   2014;   Shukla   et   al.,   2014) .   However,   thus   far,   the   application   of   seasonal-scale  

hydrologic   forecasts   in   food   insecurity   early   warning   has   been   limited   at   best.   On   the   other   hand,  

operational,   publicly   available,   state-of-the-art   dynamical   climate   forecasts   have   found   regular  

usage   in   guiding   climate   outlook,   as   well   as   assessments   of   expected   food   insecurity.   For  

example,   USAID’s   Famine   Early   Warning   Systems   Network   ( http://fews.net/ ),   G20-Group   on  
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Earth   Observations   Global   Agricultural   Monitoring   (GEOGLAM)    Crop   Monitor   for   Early  

Warning,    and   SADC’s   Climate   Service   Center   (CSC)   all   utilize   the   dynamical   climate   forecasts  

as   one   of   their   early   warning   tools.   Furthermore,   numerous   past   studies   have   investigated   the  

predictability   of   SA   climate    (Meque   and   Abiodun,   2014)    and   examined   the   skill   of   diverse  

approaches   in   forecasting,   particularly   of   rainfall,   as   well   as   streamflow   and   agricultural  

production   in   different   parts   of   this   region    (Archer   et   al.,   2017;   Cane   et   al.,   1994;   Diro,   2015;  

Landman   et   al.,   2001;   Landman   and   Beraki,   2010;   Landman   and   Goddard,   2002;   Manatsa   et   al.,  

2015;   Martin   et   al.,   2000;   Sunday   et   al.,   2014;   Trambauer   et   al.,   2015;   Winsemius   et   al.,   2014) .  

Historically,   El   Niño - Southern   Oscillation   (ENSO)   has   proven   to   be   among   the   main   predictors  

of   this   region’s   climate,   with   another   important   predictor   being   the   Southern   Indian   Ocean  

Dipole    (Hoell   et   al.,   2016,   2017;   Hoell   and   Cheng,   2017) .   

However,   the   application   of   climate-model-driven   hydrological   forecasts,   which,   as  

stated   above,   derive   their   skills   from   the   climate   forecast   skill   and   initial   hydrologic   conditions,  

has   been   limited.   Thus,   it   can   be   an   effective   early   warning   tool,   as   operational   food   insecurity  

assessment   has   been   limited,   with   the   only   other   main   example   being   the   African   Flood   and  

Drought   Monitor    (Sheffield   et   al.,   2014) .   

In   August   2018,   a   new   NASA   Hydrological   Forecasting   and   Analysis   System  

(NHyFAS),   an   operational   seasonal   hydrologic   forecasting   system   (Arsenault   et   al.,   2019),    was  

implemented   to   support   the   early   warning   efforts   of   FEWS   NET,   building   upon   existing  

hydrologic   monitoring   (McNally   et   al.,   2017).   This   study   evaluates   this   system   in   supporting  

early   warning   of   regional   food   insecurity   in   the   SA   region.   The   evaluation   is   conducted   by  

examining   the   performance   of   this   system   (i)   for   the   2015-16   drought   event,   which   led   to  
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regional   food   insecurity,   (ii)   in   explaining   regional   crop   yield   variability   in   the   region,   and   (iii)   in  

identifying   below   normal   crop   yield   events,   which   are   characteristically   associated   with   overall  

lower   food   availability   in   the   region   and,   hence,   food   insecurity.   Regional   crop   yield   is   used   as   a  

target   variable   here,   as   it   is   among   the   main   contributors   to   regional   food   insecurity.   It   is  

hypothesized   that   if   this   system   can   skillfully   forecast   regional   crop   yield   and   identify   below  

normal   regional   crop   yields,   it   can   successfully   support   the   early   warning   of   food   insecurity   in  

the   region.  

As   noted   above   and   shown   in   Fig.   1(a),   April-July   is   typically   the   main   harvest   season,  

when   the   food   reserve   is   expected   to   begin   replenishing   and   last   through   the   lean   season,   which  

starts   in   November.   Below-normal   food   availability   during   this   period   can   lead   to   food  

insecurity.   Therefore,   early   warning   systems   aim   to   provide   outlooks   for   food   insecurity   as   far   in  

advance   of   the   harvest   and   lean   season   as   possible.   Consequently,   this   study   focuses   on   using  

forecasting   and   monitoring   products   that   are   available   in   November   (4-5   months   before   the   start  

of   the   harvest   and   about   a   year   before   the   start   of   the   next   lean   season)   through   March   (1-2  

months   before   the   start   of   the   harvest   and   about   8-9   months   before   the   start   of   the   next   lean  

season)   to   examine   their   value   in   supporting   early   warning   of   food   insecurity   in   the   region.   

2   Data   and   Methodology  

2.1   Hydrologic   Modeling   Framework   

The   hydrologic   monitoring   and   forecasting   products   used   in   this   study   come   from   the  

NHyFAS   (Arsenault   et   al.,   2019).   Arsenault   et   al.   (2019)   describes   the   system   in   much   detail;   we  

provide   below   a   brief   description   of   the   products.   To   generate   hydrological   forecasts,   we   use  

NASA’s   Catchment   land   surface   model   (CLSM;   [ (Ducharne   et   al.,   2000;   Koster   et   al.,   2000)    and  
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the   Noah   Multi-Parameterization   (Noah-MP;   [ (Niu   et   al.,   2011;   Yang   et   al.,   2011)    land   surface  

model   (LSM),   which   account   for   changes   in   soil   moisture   (e.g.,   root   zone)   and   groundwater  

storage,   and   surface   energy   and   water   flux   terms.   These   two   LSMs   are   part   of   the   model   suite   in  

the   Land   Information   System   (LIS)   framework    (Kumar   et   al.,   2006) —the   primary   software  

system   used   to   produce   this   study’s   forecast   experiments.   Both   LSMs   were   spun-up   twice   for   the  

period   from   1   January,   1981   to   31   December,   2015;   then,   historical   open-loop   (OL)   runs   were  

generated   for   January   1981   through   2018.   Rootzone   SM   (RZSM),   which   is   the   main   hydrologic  

variable   used   in   this   analysis,   indicates   the   soil   moisture   in   the   top   one   meter   of   the   soil   profile.  

The   entire   depth   of   the   soil   profile   is   different   for   the   two   models   used   in   this   analysis   (typically  

about   2   m   for   Noah-MP   and   about   4   m   for   CLSM).   

2.2   Model   Parameters  

In   the   version   of   CLSM   used   here,   hydrologic   and   catchment   parameters    (Ducharne   et  

al.,   2000)    are   based   on   a   high-resolution,   global   topographic   data   set    (Verdin   and   Verdin,   1999) ,  

and   soil   texture    (Reynolds   et   al.,   2000)    and   profile   parameters   are   derived   from   the   Second  

Global   Soil   Wetness   Project   (GSWP-2;    (Guo   and   Dirmeyer,   2006)    data   set   and   mapped   to   the  

catchment   tiles.   Land   cover   classes   are   mapped   from   the   University   of   Maryland   AVHRR   data  

set,   and   vegetation   parameters   include,   for   example,   leaf   area   index   (LAI),   which   are   also  

derived   from   GSWP-2.   Albedo   scaling   factors   are   based   on   Moderate   Resolution   Imaging  

Spectroradiometer   (MODIS)   direct   and   diffuse   visible   or   near   infra-red   radiation   inputs    (Moody  

et   al.,   2008) .   

Noah-MP   vegetation   parameters   include   the   modified   IGBP   MODIS-based   land   cover  

data   set    (Friedl   et   al.,   2002) ,   leaf   area   index,   and   monthly   greenness   fraction    (Gutman   and  
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Ignatov,   1998) .   The   soil   texture   data   set   is   based   on   Reynolds   et   al.   (2000),   and   soil   parameters  

are   mapped   to   the   varying   textures.   Monthly   global   (snow-free)   albedo    (Csiszar   and   Gutman,  

1999)    and   a   maximum   snow   albedo   parameter   field   are   also   employed.   Additional   details   are  

found   in    (Niu   et   al.,   2011) .  

2.3   Input   observed   forcings   and   climate   forecasts   

The   spin-up   and   OL   runs   used   to   generate   the   long-term   “observed”   climatology   of  

RZSM   are   driven   with   NASA’s   Modern-Era   Retrospective   analysis   for   Research   and  

Applications,   version   2   (MERRA-2;   [ (Gelaro   et   al.,   2017)    atmospheric   fields   (e.g.,   2m   air  

temperature,   humidity).    Precipitation   forcing   comes   from   the   U.S.   Geological   Survey  

(USGS)/University   of   California,   Santa   Barbara   (UCSB)   Climate   Hazards   Center   InfraRed  

Precipitation   with   Station   data   set,   version   2.0   (CHIRPSv2;   [ (Funk   et   al.,   2015) .   

Hindcasts   of   RZSM   are   generated   by   forcing   the   hydrologic   models   with   NASA’s  

Goddard   Earth   Observing   System   (GEOS)   Atmosphere-Ocean   General   Circulation   Model,  

version   5   (GEOS;   [ (Borovikov   et   al.,   2017) ])   Seasonal-to-Interannual   Forecast   System.   The  

eleven   ensemble   members   of   version   1   of   this   forecast   system   that   were   used   in   the   North  

American   Multi-Model   Ensemble   (NMME)   project   are   used   in   the   forecast   portion   of   this   study.  

To   make   the   GEOS   forecasted   meteorology   consistent   with   the   meteorology   underlying   the   OL  

initial   conditions,   we   Bias-Corrected   and   Spatially   Downscaled   (BCSD;   [ (Wood   et   al.,   2002) ])  

the   GEOS   forecasts   using   the   MERRA-2   and   CHIRPS   data   sets.   The   BCSD-GEOS   forecast   files  

are   then   ingested   into   LIS   to   drive   the   LSMs   and   generate   the   dynamical   hydrological   forecasts.  

The   BCSD-GEOS   hindcasts   are   initialized   on   November   1st   (near   the   start   of   the   planting  
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season)   and   January   1st   (middle   of   the   planting   season)   and   are   run   for   each   6-month   forecast  

period   from   1982-83   to   2017-18.   

Hindcasts   of   RZSM   are   also   generated   using   the   Ensemble   Streamflow   Prediction   (ESP)  

method   (Day   1985;   Shukla   et   al.   2013),   where   the   models   are   forced   with   resampled   climatology  

of   observed   forcings   (forcings   that   are   used   to   drive   the   OL   simulation).   The   hindcasts   generated  

using   the   ESP   method   derive   their   skills   from   the   initial   hydrologic   conditions   only.  

2.4   RZSM   Monitoring   and   forecasting   products  

The   performance   of   the   NHyFAS   system   is   evaluated   through   its   RZSM   monitoring  

(generated   from   OL)   and   forecasting   products.   Both   products   are   generated   at   0.25   X   0.25  

degree   spatial   resolution   and   daily   temporal   resolution.   Daily   values   are   averaged   over   a   month  

to   get   monthly   values.   The   monthly   values   of   the   monitoring   product   are   converted   to   percentiles  

relative   to   OL   climatology   over   1982-2010,   and   monthly   values   of   the   ensemble   mean  

forecasting   products   (GEOS   and   ESP   based)   are   converted   into   percentiles   relative   to   the  

(ensemble   mean)   climatology   over   1982-2010   of   the   respective   hindcast   runs.   In   both   cases,  

empirical   distribution   taken   from   the   climatology   is   considered   to   convert   values   to   percentiles.  

Once   gridded   percentile   values   are   generated   they   are   spatially   aggregated   over   the   SA   region   (as  

shown   in   Fig.   2)   to   get   RZSM   monitoring   and   forecasting   products   over   the   SA   region.   

2.5   Regional   Crop   Yield   

The   regional   crop   yield   is   calculated   using   country-level   crop   production   and   area  

harvested   reports.   These   reports   come   from   the   United   States   Department   of   Agriculture’s  

Foreign   Agricultural   Service's   Production   Supply   and   Distribution   (PSD)   database.   To   compile  

this   database,    USDA   relies   on   several   sources,   including   official   country   statistics,   reports   from  

10  

https://doi.org/10.5194/nhess-2019-267
Preprint. Discussion started: 19 August 2019
c© Author(s) 2019. CC BY 4.0 License.



192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

agricultural   attaches   at   U.S.   embassies,   data   from   international    organizations,   publications   from  

individual   countries,   and   information   from   traders   both   inside   and   outside   of   the   target   countries.  

For   this   study,   we   focus   only   on   maize,   as   it   is   the   main   crop   in   the   region   and   the   key   crop   for  

food   security.   To   get   regional   crop   yield   from   country-level   crop   yield,   we   first   converted  

country-level   yield   into   production   using   the   harvested   area   (provided   by   the   PSD),   added   the  

total   production,   and   then   divided   it   by   the   sum   of   the   harvested   area   in   all   SA   countries   in   our  

focus   domain.   The   regional   crop   yield   is   detrended   for   the   purposes   of   this   study   to   reduce   the  

effect   of   any   long-term   changes   (e.g.   technological   changes)   on   the   crop   yield.  

3.   Results  

3.1   Performance   of   NHyFAS   during   the   2015-16   drought   event  

As   highlighted   in   section   1,   the   2015-16   drought   event   in   SA   is   among   the   most   severe   in  

terms   of   drought   severity   and   food   insecurity   impacts   in   the   last   few   decades.   Therefore,   we  

begin   the   evaluation   of   the   suitability   of   NHyFAS   in   supporting   food   insecurity   early   warning   in  

the   SA   region   by   examining   how   this   system   would   have   performed   during   the   2015-16   event.  

Although   the   NHyFAS   operationally   provides   the   seasonal   forecasts   every   month,   for   the  

purpose   of   this   study,   we   focus   on   the   forecast   initialized   on   November   1   (near   the   start   of   the  

planting   season)   and   January   1   (near   the   middle   of   the   growing   season)   of   2015-16   event.   Figure  

2   shows   the   RZSM   forecasts   for   the   growing   season   made   on   November   1st   of   2015.   By   this  

time   in   the   season,   both   FEWS   NET   and   SADC   had   provided   early   warning   of   poor   rainfall  

performance   in   the   region   (Magadzire   et   al.   2017).   The   NHyFAS   RZSM   forecasts   would   have  

provided   further   evidence   of   a   looming   unprecedented   drought   in   the   region.   These   forecasts  

would   have   also   indicated   that   RSA,   which   is   the   most   important   country   for   the   region’s   food  
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production,   was   going   to   be   within   the   epicenter   of   this   drought   event.   These   forecasts,   in   turn,  

could   potentially   have   triggered   appropriate   actions   earlier   by   the   early   warning   agencies   as   well  

as   the   decision-makers   (e.g.,   national   governments   and   international   relief   agencies).   

Later   in   the   season   as   the   observed   precipitation   data   became   available,   RZSM  

monitoring   products   would   have   provided   refined   estimates   of   the   spatial   extent   and   severity   of  

drought   in   the   region.   Figure   2   (bottom   panel)   shows   the   RZSM   monitoring   product   available  

after   each   of   the   months   of   November   2015   through   February   2016.   This   monitoring   product  

would   have   provided   additional   proof   of   the   drought   occurrence   in   the   region   and   shown   that  

RSA   was   within   the   epicenter   of   this   drought.   It   is   important   to   state   that   even   the   monitoring  

product   can   be   effectively   used   as   a   predictor   of   food   insecurity   events   as   they   are   available  

before   the   typical   start   of   the   harvest   season   (in   April)   and   the   lean   season   (in   November).  

  3.2 Performance   of   NHyFAS   in   supporting   food   insecurity   early   warning   

Next,   we   investigate   the   long-term   performance   of   NHyFAS   in   supporting   food  

insecurity   early   warning   by   examining   how   well   forecasting   and   monitoring   products   available  

from   this   system   can   explain   historical   variability   in   regional   crop   yield   of   the   SA   region   and   in  

particular,   help   identify   below-normal   regional   yield   events.   Regional   crop   yield   is   calculated   by  

adding   the   yearly   productions   from   the   SA   countries,   then   dividing   it   by   the   yearly   total  

harvested   area.   The   regional   crop   yield   is   then   detrended   to   remove   the   effect   of   any   long-term  

changes   (such   as   technological   changes)   on   the   regional   yield.   

For   this   analysis,   we   make   use   of   the   February   RZSM   forecasts   initialized   on   November  

1   and   January   1,   and   February   RZSM   monitoring   product   (available   in   early   March),   as   February  

RZSM   historically   has   the   highest   correlation   with   the   detrended   crop   yield,   as   highlighted   in  
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Fig.   3.   This   figure   also   indicates   that   February   RZSM   has   higher   correlation   with   detrended   crop  

yield   than   December-February   (DJF)   seasonal   precipitation   and   air   temperature   however   the  

difference   in   correlation   is   not   statistically   significant.  

Figure   4   (a   &   b)   show   the   interannual   covariability   of   February   RZSM   forecasts   (based  

on   ESP   method   and   bias-corrected   GEOS   forecasts)   initialized   on   November   1   and   January   1,  

respectively,   with   the   detrended   regional   crop   yield.   The   correlation   between   GEOS-based  

February   RZSM   forecasts   initialized   on   November   1   is   0.49,   which   is   higher   than   the   correlation  

based   on   monitoring   products   at   this   point   in   the   season   (Fig.   3).   This   indicates   that   a   more  

skillful   (than   the   monitoring   product)   early   warning   of   regional   crop   yield   can   be   potentially  

made   as   early   as   on   November   1,   about   4-5   months   before   the   harvest   season   starts   (around  

April)   and   about   a   year   before   the   next   lean   season   (around   November)   starts.   The   correlation  

value   remains   similar   (0.45)   even   when   the   forecast   is   initialized   on   January   1;   however,   the  

correlation   value   is   still   higher   than   what   can   be   achieved   using   the   monitoring   product   at   this  

point   in   the   season   (Fig.   3).   Furthermore,   the   correlation   values   of   GEOS-based   RZSM   forecasts  

is   higher   than   ESP-based   RZSM   forecasts.   ESP-based   RZSM   forecasts   derive   their   skill   from   the  

initial   hydrologic   conditions   only,   whereas   GEOS-based   RZSM   forecasts   derive   their   skill   from  

the   climate   forecasts   as   well.   Hence,   the   source   of   additional   skill   of   GEOS-based   RZSM  

forecasts   is   the   climate   forecasts.  

Figure   4   (c)   shows   the   covariability   of   the   February   RZSM   monitoring   product   with   the  

detrended   regional   yield.   The   correlation   value   with   the   regional   crop   yield   increases   to   0.79   and  

is   substantially   higher   relative   to   when   RZSM   forecasting   products   are   used   (Fig.   4a   and   b).  

February   RZSM   monitoring   product   is   available   in   early   March,   so   a   high   correlation   of   the  

13  

https://doi.org/10.5194/nhess-2019-267
Preprint. Discussion started: 19 August 2019
c© Author(s) 2019. CC BY 4.0 License.



255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

regional   crop   yield   with   that   product   potentially   means   that   early   warning   of   regional   crop   yield  

can   be   made   with   a   high   skill,   about   1-2   months   before   the   harvest   season   starts   (around   April)  

and   about   8-9   months   before   the   next   lean   season   (around   the   next   November)   starts.   This   is  

likely   to   strengthen   FEWS   NET’s   current   food   insecurity   early   warning   efforts   in   the   region.  

Next,   we   examine   how   well   the   forecasting   and   monitoring   RZSM   products   do   in  

providing   early   warning   of   below-normal   crop   yield   events.   This   criterion   for   performance  

evaluation   is   of   particular   significance   for   food   insecurity   early   warning   in   the   region,   as  

below-normal   crop   yield   events   are   the   ones   which   generally   lead   to   food   insecurity.   To  

investigate   this,   we   calculate   the   probability   of   below-normal   crop   yield   events   when   either  

February   RZSM   forecasting   products   (initialized   on   November   1   and   January   1),   and   RZSM  

monitoring   product   for   the   month   of   November   (available   in   early   December)   through   the   month  

of   February   (available   in   early   March)   were   in   the   lower   tercile.   In   this   case,   below-normal  

regional   crop   yield   events   are   the   events   that   lie   in   the   bottom   18   (i.e.   bottom   half)   when  

detrended   crop   yields   for   the   36   years   is   ranked   in   ascending   order.   Similarly,   lower   terciles   of  

RZSM   products   are   the   values   that   are   in   the   bottom   12   (i.e.   bottom   tercile)   of   the   RZSM  

products   when   ranked   in   ascending   order.   In   the   case   of   RZSM,   the   ranked   climatology   is  

different   for   each   of   the   forecasting   products   and   the   monitoring   products   for   each   month.  

Figure   5   shows   the   fraction   of   years   with   below-normal   crop   yield   when   February   RZSM  

forecasts   (made   on   November   1   or   January   1)   were   in   the   lower   tercile   (shown   by   blue   color  

bars)   or   when   monthly   RZSM   monitoring   products   (shown   by   green   color   bars)   were   in   the  

lower   tercile.   These   results   indicate   that   as   early   as   November   1,   if   the   February   RZSM   is   being  

forecasted   to   be   in   the   lower   tercile,   then   there   is   about   ~66%   probability   of   the   regional   crop  
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yield   being   below   normal   (statistically   significant   at   86%   confidence   level).   This   would   be   4-5  

months   before   the   start   of   the   harvest   season   and   about   one   year   before   the   start   of   the   next   lean  

season.   The   inferred   probability   value   increases   to   ~83%   when   the   February   RZSM   forecasts,  

initialized   in   January,   are   in   the   lower   tercile   (statistically   significant   >95%   confidence   level).  

Finally,   by   early   March,   by   the   time   monitoring   of   February   of   RZSM   is   available,   the   inferred  

probability   increases   to   100%   (statistically   significant   >95%   confidence   level).   In   other   words,  

over   1982-2016,   whenever   the   February   RZSM   for   the   SA   region   was   in   the   lowest   tercile,   the  

crop   yield   in   the   following   season   had   been   below   normal   (based   on   detrended   yield).   This  

would   be   1-2   months   before   the   start   of   the   harvest   season   and   about   8-9   months   before   the   start  

of   the   next   lean   season.  

Of   course,   the   estimation   of   these   probabilities   is   necessarily   limited   by   the   small   sample  

sizes   examined;   the   actual   probability   of   low   crop   yield   based   on   low   February   RZSM,   for  

example,   while   apparently   high,   is   not   a   full   100%.    Nevertheless,   these   results   provide,   overall,  

further   evidence   of   the   suitability   of   the   forecasting   and   monitoring   products   from   the   NHyFAS  

in   supporting   early   warning   of   food   insecurity   in   the   region.   

4   Discussion  
This   study   makes   a   case   for   the   application   of   NHyFAS’s   RZSM   forecasting   and  

monitoring   products   in   supporting   the   early   warning   of   food   insecurity   in   SA.   It   has   been   shown  

that   the   successful   early   warning   of   crop   yield,   and   especially   below-normal   crop   yield   years,  

can   be   issued   based   on   these   products,   which   would   offer   significant   implications   for   the   region’s  

food   security.   Here,   it   is   assumed   that   when   the   SA   region   faces   a   production   shortfall,   the  

regional   food   insecurity   is   likely   to   rise.   This   was   certainly   the   case   during   the   2015-16   El  

Niño—which   was   the   last   major   food   insecurity   event   in   the   region.   However,   this   narrow  
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assumption   ignores   other   important   factors   that   may   lead   to   or   further   worsen   food   insecurity   in  

the   region,   such   as   inadequate   agricultural   inputs,   price   shocks   (which   can   be   global   in   nature),  

rise   in   population,   conflict,   limited   livelihood   options,   stocks,   etc.   Nonetheless,   the   direct  

relationship   of   crop   yield   with   the   interannual   variability   in   available   moisture   makes   RZSM   an  

important   variable   for   food   security   monitoring.   It   is   of   keen   interest   to   early   warning   systems  

like   FEWS   NET,   which   is   presently   the   primary   end   user   of   the   NHyFAS .    Crop   yield   early  

warning   based   on   the   NHyFAS   products     are   also   directly   relevant   to   international   collaborative  

efforts   like   the   GEOGLAM   initiative   and,   particularly,   to   the   Crop   Monitor   for   Early   Warning,  

which   provides   monthly   assessments   of   crop   conditions   for   the   countries   most   vulnerable   to   food  

insecurity.   Such   assessments   are   key   to   helping   reduce   uncertainty   of   crop   prospects   as   the  

growing   season   progresses,   and   provide   critical   evidence   for   informing   food   security   decisions  

by   humanitarian   organizations   and   governments   alike.   

It   is   also   worth   mentioning   here   that   crop   yield   reports   can   be   influenced   by   external  

factors   (for   example,   reporting   issues   related   to   methods)   other   than   long-term   agricultural,  

technology-driven   changes   and   climate   interannual   variability.   The   effect   of   these   factors   on   the  

regional   crop   yield   of   course   cannot   be   discounted   by   the   detrending   method   employed   in   this  

study.  

Finally,   the   results   of   this   study   are   also   likely   affected   by   the   use   of   only   one   dynamical  

climate   forecast   model   for   driving   the   seasonal   hydrologic   system.   Adding   forecasts   from   more  

climate   and   hydrologic   models   would   likely   enhance   the   skill   of   the   system.   The   choice   of   one  

dynamical   system   was   made   mostly   for   operational   purposes,   since   GEOS   archived   and  
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real-time   forecasts   include   all   atmospheric   forcing   variables   needed   to   drive   such   LSMs,   and   are  

available   routinely   to   facilitate   operational   production   of   hydrologic   forecasts.   

5   Conclusions  

The   region   of   SA   witnessed   several   food   insecurity   events   in   the   last   few   decades.  

Mitigation   of   food   insecurity   impact   requires   timely   and   effective   interventions   by   national,  

regional,   and   international   agencies.   To   support   those   interventions,   early   warning   of   food  

insecurity   is   needed.   In   this   study,   we   investigate   the   suitability   of   the   operational   RZSM  

products   produced   by   a   recently   developed   NASA   seasonal   scale   hydrologic   forecasting   system,  

NHyFAS,   in   supporting     food   insecurity   early   warning   in   this   region.   

The   key   findings   of   this   study   are:   (i)   the   NHyFAS   products   would   have   identified   the  

regional   severe   2015-2016   drought   event   (which   peaked   in   December-February)   at   least   as   early  

as   November   1st   of   2015;   (ii)   February   RZSM   forecasts   produced   as   early   as   November   1   (4-5  

months   before   the   start   of   harvest,   and   about   one   year   before   the   start   of   the   next   lean   season)  

can   explain   the   interannual   variability   in   regional   crop   yield   production   with   moderate   skill  

(correlation   0.49);   (iii)   use   of   dynamical   climate   forecasts   adds   to   the   skill   (relative   to   the   skill  

coming   from   the   initial   hydrologic   conditions   alone)   of   February   RZSM   forecasts   in   predicting  

regional   crop   yield;   (iv)   the   February   RZSM   monitoring   product,   available   in   early   March   (1-2  

months   before   the   start   of   harvest   and   8-9   months   before   the   start   of   the   next   lean   season)   can  

explain   the   variability   in   regional   crop   yield   with   high   skill   (correlation   of   0.79);   (v)   when   the  

February   RZSM   forecast   (initialized   on   November   1)   is   found   to   be   in   the   lowest   tercile,   the  

subsequent   detrended   regional   crop   yield   is   below   normal   about   66%   of   the   time   (statistical  

significance   level   ~86%),   and   likewise,   when   the   February   RZSM   monitoring   product   is   in   the  
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lowest   tercile,   the   subsequent   crop   yield,   for   the   sampling   period   considered,   is   always  

below-normal   (statistical   significance   level   >95%)  

The   NHyFAS   products   described   here   began   being   generated   in   August   2018   for  

operational   applications   by   FEWS   NET.   Each   month,   FEWS   NET’s   regional   scientists   (located  

in   eastern,   western   and   southern   Africa)   review   the   latest   products   ahead   of   the   FEWS   NET’s  

monthly   climate   discussions   (Funk   et   al.   2019).   The   products   are   used   to   support   or   revise   the  

assumptions   of   climate   and   hydrologic   conditions   for   the   upcoming   season.   The   updated  

assumptions   are   then   passed   on   to   food   analysts   for   the   region   in   order   to   help   inform   needed  

relief   actions.   The   forecasting   products   are   currently   available   via  

https://lis.gsfc.nasa.gov/projects/fame .   
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forecast   data   sets   are   generated   and   supported   by   NASA’s   Global   Modeling   and   Assimilation  

Office   (GMAO).   High-performance   computing   resources   were   provided   by   the   NASA   Center   for  

Climate   Simulation   (NCCS)   in   Greenbelt,   MD.    The   authors   thank   Climate   Hazards   Center’s  

technical   writer   Juliet   Way-Henthorne   for   providing   professional   editing.  
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Figure   1:   (a)    Schematic   representation   of   a   typical   seasonal   calendar   for   the   southern  

Africa   region.   (taken   from:    http://fews.net/southern-africa )     (b)   Monthly   climatology   of  

maize   prices   in   SA   countries.   The   monthly   mean   prices   are   normalized   relative   to   the  

maximum   mean   monthly   price   for   a   given   country,   as   the   actual   values   of   the   mean  

monthly   prices   are   different   for   different   countries.    Comparison   of   mean   monthly   maize  
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361

prices   for   (c)   Malawi   (d)   Mozambique   (e)   Zimbabwe   (f)   South   Africa,   during   the   2015-16  

event   (red   line)    with   the   previous   5-year   mean   prices   (black   line).   The   price   data   is  

available   from   FAOSTAT   (FAO   2019).   
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Figure   2:   Forecast   (top   panel)   and   Monitoring   of   Rootzone   soil   moisture    (RZSM)   

percentiles   for   the   months   of   November   2015   through   February   2016.   October   2015   

conditions   reflect   forecast   initialized   on   November   1,   2015.   The   RZSM   monitoring  

product   for   a   given   month   is   available   during   the   early   part   of   the   following   month.   The   

historical   climatology   (1982-2010)   was   used   to   calculate   percentile.  

  

26  

https://doi.org/10.5194/nhess-2019-267
Preprint. Discussion started: 19 August 2019
c© Author(s) 2019. CC BY 4.0 License.



370

371

372

373

374

375

376

377

 

Figure   3:   Variability   of   the   correlation   between   the   3-month   seasonal   precipitation,   

3-month   seasonal   air   temperature   (AirT),   and   monthly   RZSM   monitoring   product   with   the   

detrended   crop   yield.   This   result   highlights   that   RZSM   is   potentially   a   better   predictor   of   

crop   yield   than   seasonal   precipitation   and   AirT;   also,   the   skill   is   the   highest   in   early   March   

when   DJF   seasonal   precipitation,   AirT,   and   February   RZSM   monitoring   products   are  

available.  
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Figure   4:   Covariability   of   (a)   February   RZSM   forecasts   (initialized   on   November   1)  

generated   using   ESP   method   and   bias-corrected   GEOS   forecasts,   (b)    February   RZSM  

forecasts   (initialized   on   January   1)   generated   using   ESP   method   and   bias-corrected   GEOS  

forecasts,   and   (c)   the   February   RZSM   monitoring   product   (available   in   early   March),   with  

detrended   regional   yield   in   southern   Africa.  
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Figure   5:   Fraction   of   years   with   below-normal   regional   crop   yield   (based   on   the   rank   of  

detrended   crop   yield)   given   that   the   corresponding   RZSM   forecasts   (initialized   on  

November   1   and   January   1)   and   RZSM   monitoring   product   (available   in   early   March)  

were   in   the   lowest   tercile   (based   on   the   rank   of   the   RZSM   climatology).   Note   that   the   Nov   1  

[Jan   1]   RZSM   forecasts-based   probability   of   ~66%   [~83%]   is   statistically   significant   at   the  

~86%   [~95%]   confidence   level.  
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